قضیه ناتمامیت گودل و فلسفه ذهن
Authors
abstract
یکی از کاربردهای اساسی قضایای ناتمامیت گودل در فلسفه، نقش آن ها در استدلال هایی است که بین ذهن انسان از یک طرف و یک الگوریتم (ماشین) یا نظام صوری متناهی از طرف دیگر مقایسه به عمل می آورند. دو استدلال متمایز در این زمینه مطرح گشته است. در هر دو استدلال درک صدق جمله گودل توسط انسان، به عنوان ملاکی برای تفوق بر هر ماشینی قلمداد شده است. اما ایرادهایی چند بر هر دو استدلال وارد است. در این مقاله با شرح و بسط استدلال های ذکر شده، به بررسی مجادلات و مباحثات دامنه داری که میان دو گروه مکانیک گرا و ضد مکانیک گرا وجود داشته است پرداخته ایم. با تحلیل دقیق قضایای ناتمامیت و ارتباط آن ها با معرفت حسابی بشر می توان چار چوب های موجود در زمینه بحث مورد نظر را شکل داد. با تحلیل دقیق این مسأله می توان گفت که هیچ نوع دلیل قاطعی، با استفاده از این قضایا، برای تفوق ذهن بشر بر ماشین وجود ندارد؛ بلکه تنها می توان گفت که با اعمال این قضایا و انتخاب حوزه شناخت پذیر ریاضی بشر به عنوان یک پیش فرض تقابل یا تعاند انسان و ماشین به چه معناست.
similar resources
قضیة ناتمامیت گودل و فلسفة ذهن
یکی از کاربردهای اساسی قضایای ناتمامیت گودل در فلسفه، نقش آنها در استدلالهایی است که بین ذهن انسان از یک طرف و یک الگوریتم (ماشین) یا نظام صوری متناهی از طرف دیگر مقایسه به عمل میآورند. دو استدلال متمایز در این زمینه مطرح گشته است. در هر دو استدلال درک صدق جملة گودل توسط انسان، به عنوان ملاکی برای تفوق بر هر ماشینی قلمداد شده است. اما ایرادهایی چند بر هر دو استدلال وارد است. در این مقاله با ...
full textقضیه ناتمامیت گودل و پیامدهای فلسفی آن
ابتدا با عنوان "مقدمات قضایای ناتمامیت گودل" ، تعاریفی از بیان پذیری ، نمایش پذیری ، محاسبه پذیری ، توابع بازگشتی اولیه ، توابع بازگشتی ، تابع مشخصه و چند تابع مهم دیگر که در اثبات لم نقطه ثابت مورد نیاز است ، ارائه خواهد شد . سپس با بررسی این توابع ، هم ارزی رابطه بین بازگشتی و بیان پذیری مطرح می شود . در فصل اول ،اصول موضوعه دستگاه های نظریه صوری اعداد حساب و نظریه مجموعه ها ، معرفی ؛ وتلاش ه...
آیا قضایای ناتمامیت گودل را میتوان در مکانیک کوانتومی بهکاربرد؟
مکانیک کوانتومی نظریه ای است که ساختار فکری بشر را دگرگون کرد. اما با وجود موفقیت ها ی زیاد آن از زمان اینشتین تاکنون عده ای در مورد کامل بودن آن دارای شک ، تردید و شبهه هستند. یکی از راه هایی که عده ای کامل بودن این نظریه را مورد تردید قرار می دهند قضایای ناتمامیت گودل است. کورت گودل در دوران دکترا و اندکی پس از تحقیق در مورد برنامه های تمامیت و سازگاری هیلبرت در سیستم های صوری، به اثبات دو ق...
full textقضایای ناتمامیت گودل و راسر
در این پایاننامه، اثبات های جدیدی از قضیه ناتمامیت که در دهه 1990 به دست آمده اند، ارایه می شود، به طوری که در آن ها از لم قطری سازی برای ساختن یک جمله مستقل استفاده نمی شود.
برنامه هیلبرت و ناتمامیت گودل
همانطور که از نام این پایان نامه پیداست، تلاش شده است برنامه هیلبرت، که از معروف ترین و موثرترن برنامه های پی گیری شده ی ریاضیات در قرون اخیر است، یعنی صورتگرایی متناهی گرایانه معرفی شده، و فرجام کار آن که در قضایای ناتمامیت گودل نمود می یابند معرفی، اثبات و توجیه شوند. برنامه هیلبرت در پی برنامه هایی همچون منطق گرایی و شهودگرایی و به منظور نشان دادن برائت ریاضیات از هرگونه شک و تردیدی بود. در ...
قضیۀ اول ناتمامیت گودل و ضدواقع گرایی در فیزیک
گودل طی مقالۀ مفصلی در 1931 برهان پیچیده و نبوغ آمیزی بر ناتمامیت ریاضیات مطرح ساخت. در آن قضیه گودل نشان داده بود که در هر سیستم اکسیوماتیک شامل حساب (تحت شرایط خاصی)، گزاره هایی تصمیم ناپذیر وجود دارند. ایدۀ به کار رفته در برهان گودل شبیه پارادوکس ریچارد است، و همین باعث شده است که عده ای در پذیرش آن تردید کنند. در این مقاله نخست نگاهی اجمالی به برهان گودل می اندازیم، تا مشخص شود که این برهان...
full textMy Resources
Save resource for easier access later
Journal title:
منطق پژوهیجلد ۱، شماره ۲، صفحات ۱۰۳-۱۱۸
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023